PDF Download: ipython interactive computing and visualization cookbook eBook

Ipython Interactive Computing And Visualization Cookbook

IPython Interactive Computing and Visualization Cookbook PDF
Author: Cyrille Rossant
Publisher: Packt Publishing Ltd
Release: 2014-09-25
Size: 75.65 MB
Format: PDF, ePub
Category : Computers
Languages : en
Pages : 512
View: 796

Get Book


Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Ipython Interactive Computing And Visualization Cookbook Second Edition

IPython Interactive Computing and Visualization Cookbook  Second Edition PDF
Author: Cyrille Rossant
Publisher:
Release: 2018-01-31
Size: 76.51 MB
Format: PDF, ePub, Docs
Category :
Languages : en
Pages : 548
View: 5611

Get Book


Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book Description Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is for This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Learning Ipython For Interactive Computing And Data Visualization

Learning IPython for Interactive Computing and Data Visualization PDF
Author: Cyrille Rossant
Publisher: Packt Publishing Ltd
Release: 2015-10-21
Size: 26.28 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 200
View: 4443

Get Book


Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook.

Python

Python                                                                                                   PDF
Author:
Publisher: "Издательский дом ""Питер"""
Release: 2017-08-25
Size: 26.17 MB
Format: PDF, Mobi
Category : Computers
Languages : ru
Pages : 576
View: 932

Get Book


Книга «Python Data Science Handbook» - это подробное руководство по самым разным вычислительным и статистическим методам, без которых немыслима любая интенсивная обработка данных, научные исследования и передовые разработки. Читатели, уже имеющие опыт программирования и желающие эффективно использовать Python в сфере Data Science, найдут в этой книге ответы на всевозможные вопросы, например: 1) как мне считать этот формат данных в мой скрипт? 2) Как преобразовать, очистить эти данные и манипулировать ими? 3) Как визуализировать данные такого типа? Как при помощи этих данных разобраться в ситуации, получить ответы на вопросы, построить статистические модели или реализовать машинное обучение?

                                                              PDF
Author: Дэвид Фримэн
Publisher: Litres
Release: 2019-10-01
Size: 31.83 MB
Format: PDF, Mobi
Category : Computers
Languages : ru
Pages :
View: 3244

Get Book


Способна ли технология машинного обучения решить проблемы компьютерной безопасности? Или надежда на это является лишь следствием повышенного внимания к машинному обучению?С помощью этой книги вы изучите способы применения машинного обучения в задачах обеспечения безопасности, таких как выявление вторжения извне, классификация вредоносных программ и анализ сетевой среды. Особое внимание уделено задачам по созданию работоспособных, надежных масштабируемых систем извлечения и анализа данных в сфере обеспечения безопасности.Издание предназначено инженерам по обеспечению безопасности, а также специалистам по обработке данных научными методами.

Python Data Science Handbook

Python Data Science Handbook PDF
Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
Release: 2016-11-21
Size: 75.53 MB
Format: PDF, ePub
Category : Computers
Languages : en
Pages : 548
View: 6690

Get Book


For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Web And Network Data Science

Web and Network Data Science PDF
Author: Thomas W. Miller
Publisher: FT Press
Release: 2014-12-19
Size: 71.49 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : en
Pages : 384
View: 7348

Get Book


Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.

Python For Data Analysis

Python for Data Analysis PDF
Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
Release: 2013
Size: 59.28 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 452
View: 5056

Get Book


Presents case studies and instructions on how to solve data analysis problems using Python.

Interactive Applications Using Matplotlib

Interactive Applications Using Matplotlib PDF
Author: Benjamin V. Root
Publisher: Packt Publishing Ltd
Release: 2015-03-24
Size: 27.72 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages : 174
View: 3833

Get Book


This book is intended for Python programmers who want to do more than just see their data. Experience with GUI toolkits is not required, so this book can be an excellent complement to other GUI programming resources.