PDF Download: introduction to pattern recognition eBook

Introduction To Pattern Recognition

Introduction to Pattern Recognition PDF
Author: Menahem Friedman
Publisher: World Scientific
Release: 1999
Size: 47.76 MB
Format: PDF, Docs
Category : Computers
Languages : en
Pages : 329
View: 673

Get Book


This book is an introduction to pattern recognition, meant for undergraduate and graduate students in computer science and related fields in science and technology. Most of the topics are accompanied by detailed algorithms and real world applications. In addition to statistical and structural approaches, novel topics such as fuzzy pattern recognition and pattern recognition via neural networks are also reviewed. Each topic is followed by several examples solved in detail. The only prerequisites for using this book are a one-semester course in discrete mathematics and a knowledge of the basic preliminaries of calculus, linear algebra and probability theory.

Introduction To Pattern Recognition

Introduction to Pattern Recognition PDF
Author: Sergios Theodoridis
Publisher: Academic Press
Release: 2010-03-03
Size: 61.90 MB
Format: PDF, Mobi
Category : Computers
Languages : en
Pages : 231
View: 4911

Get Book


Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition Solved examples in Matlab, including real-life data sets in imaging and audio recognition Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)

Introduction To Pattern Recognition And Machine Learning

Introduction to Pattern Recognition and Machine Learning PDF
Author: M Narasimha Murty
Publisher: World Scientific
Release: 2015-04-22
Size: 30.53 MB
Format: PDF
Category : Computers
Languages : en
Pages : 404
View: 3244

Get Book


This book adopts a detailed and methodological algorithmic approach to explain the concepts of pattern recognition. While the text provides a systematic account of its major topics such as pattern representation and nearest neighbour based classifiers, current topics — neural networks, support vector machines and decision trees — attributed to the recent vast progress in this field are also dealt with. Introduction to Pattern Recognition and Machine Learning will equip readers, especially senior computer science undergraduates, with a deeper understanding of the subject matter. Contents:IntroductionTypes of DataFeature Extraction and Feature SelectionBayesian LearningClassificationClassification Using Soft Computing TechniquesData ClusteringSoft ClusteringApplication — Social and Information Networks Readership: Academics and working professionals in computer science. Key Features:The algorithmic approach taken and the practical issues dealt with will aid the reader in writing programs and implementing methodsCovers recent and advanced topics by providing working exercises, examples and illustrations in each chapterProvides the reader with a deeper understanding of the subject matterKeywords:Clustering;Classification;Supervised Learning;Soft Computing

Introduction To Statistical Pattern Recognition

Introduction to Statistical Pattern Recognition PDF
Author: Keinosuke Fukunaga
Publisher: Elsevier
Release: 2013-10-22
Size: 58.79 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : en
Pages : 592
View: 2325

Get Book


This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.

Pattern Recognition And Classification

Pattern Recognition and Classification PDF
Author: Geoff Dougherty
Publisher: Springer Science & Business Media
Release: 2012-10-28
Size: 53.48 MB
Format: PDF
Category : Computers
Languages : en
Pages : 196
View: 5837

Get Book


The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.

Pattern Recognition

Pattern Recognition PDF
Author: Konstantinos Koutroumbas
Publisher: Academic Press
Release: 2008-11-26
Size: 64.59 MB
Format: PDF, Mobi
Category : Computers
Languages : en
Pages : 984
View: 4260

Get Book


This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. · Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques · Many more diagrams included--now in two color--to provide greater insight through visual presentation · Matlab code of the most common methods are given at the end of each chapter. · More Matlab code is available, together with an accompanying manual, via this site · Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms. · An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869). Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.

Pattern Recognition

Pattern Recognition PDF
Author: Jürgen Beyerer
Publisher: Walter de Gruyter GmbH & Co KG
Release: 2017-12-04
Size: 27.20 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 311
View: 533

Get Book


The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features, their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book is to clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors’ point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book. Mathematical methods explained thoroughly Extremely practical approach with many examples Based on over ten years lecture at Karlsruhe Institute of Technology For students but also for practitioners

Statistical Pattern Recognition

Statistical Pattern Recognition PDF
Author: Andrew R. Webb
Publisher: John Wiley & Sons
Release: 2003-07-25
Size: 17.74 MB
Format: PDF, ePub, Docs
Category : Mathematics
Languages : en
Pages : 514
View: 4423

Get Book


Statistical pattern recognition is a very active area of study and research, which has seen many advances in recent years. New and emerging applications - such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition - require robust and efficient pattern recognition techniques. Statistical decision making and estimation are regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fully updated with new methods, applications and references. It provides a comprehensive introduction to this vibrant area - with material drawn from engineering, statistics, computer science and the social sciences - and covers many application areas, such as database design, artificial neural networks, and decision support systems. * Provides a self-contained introduction to statistical pattern recognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vector machines, and unsupervised classification. * Each section concludes with a description of the applications that have been addressed and with further developments of the theory. * Includes background material on dissimilarity, parameter estimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions to more lengthy projects. The book is aimed primarily at senior undergraduate and graduate students studying statistical pattern recognition, pattern processing, neural networks, and data mining, in both statistics and engineering departments. It is also an excellent source of reference for technical professionals working in advanced information development environments.

An Introduction To Object Recognition

An Introduction to Object Recognition PDF
Author: Marco Alexander Treiber
Publisher: Springer Science & Business Media
Release: 2010-07-23
Size: 24.45 MB
Format: PDF, Docs
Category : Computers
Languages : en
Pages : 202
View: 2680

Get Book


Rapid development of computer hardware has enabled usage of automatic object recognition in an increasing number of applications, ranging from industrial image processing to medical applications, as well as tasks triggered by the widespread use of the internet. Each area of application has its specific requirements, and consequently these cannot all be tackled appropriately by a single, general-purpose algorithm. This easy-to-read text/reference provides a comprehensive introduction to the field of object recognition (OR). The book presents an overview of the diverse applications for OR and highlights important algorithm classes, presenting representative example algorithms for each class. The presentation of each algorithm describes the basic algorithm flow in detail, complete with graphical illustrations. Pseudocode implementations are also included for many of the methods, and definitions are supplied for terms which may be unfamiliar to the novice reader. Supporting a clear and intuitive tutorial style, the usage of mathematics is kept to a minimum. Topics and features: presents example algorithms covering global approaches, transformation-search-based methods, geometrical model driven methods, 3D object recognition schemes, flexible contour fitting algorithms, and descriptor-based methods; explores each method in its entirety, rather than focusing on individual steps in isolation, with a detailed description of the flow of each algorithm, including graphical illustrations; explains the important concepts at length in a simple-to-understand style, with a minimum usage of mathematics; discusses a broad spectrum of applications, including some examples from commercial products; contains appendices discussing topics related to OR and widely used in the algorithms, (but not at the core of the methods described in the chapters). Practitioners of industrial image processing will find this simple introduction and overview to OR a valuable reference, as will graduate students in computer vision courses. Marco Treiber is a software developer at Siemens Electronics Assembly Systems, Munich, Germany, where he is Technical Lead in Image Processing for the Vision System of SiPlace placement machines, used in SMT assembly.